Irregular rupture process of the 2022 Taitung, Taiwan, earthquake sequence

 

  • CW Bureau (CWB, Taiwan). Central weather bureau seismographic network. Int. Fed. Digit. Seismogr. Netw. https://doi.org/10.7914/SN/T5 (2012).

    Article

    Google Scholar

  • Institute of Earth Sciences, Academia Sinica, Taiwan (1996): Broadband Array in Taiwan for Seismology. Institute of Earth Sciences, Academia Sinica, Taiwan. Other/Seismic Network.

  • Jian, P., Tseng, T., Liang, W. & Huang, P. A new automatic full-waveform regional moment tensor inversion algorithm and its applications in the Taiwan area. Bull. Seismol. Soc. Am. 108573–587 (2018).

    Article

    Google Scholar

  • Chen, K. H., Toda, S. & Rau, R.-J. A leaping, triggered sequence along a segmented fault: The 1951 ML 7.3 Hualien-Taitung earthquake sequence in eastern Taiwan. J Geophys Res 113B02304 (2008).

    ADS

    Google Scholar

  • Thomas, M. Y., Avouac, J.-P., Champenois, J., Lee, J.-C. & Kuo, L.-C. Spatiotemporal evolution of seismic and aseismic slip on the longitudinal valley fault, Taiwan. J. Geophys. Res. Solid Earth 1195114–5139 (2014).

    Article
    ADS

    Google Scholar

  • Shyu, J. B. H., Yin, Y.-H., Chen, C.-H., Chuang, Y.-R. & Liu, S.-C. Updates to the on-land seismogenic structure source database by the Taiwan earthquake model (TEM) project for seismic hazard analysis of Taiwan. Terr. Atmos. Ocean. Sci. 31469–478 (2020).

    Article

    Google Scholar

  • Shyu , JBH , Chuang , Y.-R. , Chen , Y.-L. , Lee , Y.-R. & Cheng , C.-T. A new on-land seismogenic structure source database from the Taiwan Earthquake Model (TEM) Project for Seismic Hazard Analysis of Taiwan. Terr. Atmos. Ocean. Sci. 27311 (2016).

    Article

    Google Scholar

  • NASA JPL (2013). NASA Shuttle Radar Topography Mission Global 3 arc second . NASA EOSDIS Land Processes DAAC. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL3.003. Retrieved 19 Oct 2022.

  • Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 41027 (2003).

    Article
    ADS

    Google Scholar

  • Shen, Z.-K. et al. Slip maxima at fault junctions and rupturing of barriers during the 2008 Wenchuan earthquake. Nat. Geosci. 2718–724 (2009).

    Article
    ADS
    CAS

    Google Scholar

  • Wei, S. et al. Superficial simplicity of the 2010 El Mayor-Cucapah earthquake of Baja California in Mexico. Nat. Geosci. 4615–618 (2011).

    Article
    ADS
    CAS

    Google Scholar

  • Barnhart, W. D., Hayes, G. P., Briggs, R. W., Gold, R. D. & Bilham, R. Ball-and-socket tectonic rotation during the 2013 Mw 7.7 Balochistan earthquake. Earth Planet Sci. Lett. 403210–216 (2014).

    Article
    ADS
    CAS

    Google Scholar

  • Hamling, I. J. et al. Complex multifault rupture during the 2016 Mw 7.8 Kaikōura earthquake, New Zealand. Science (1979) 356eaam7194 (2017).

    Google Scholar

  • Shimizu, K., Yagi, Y., Okuwaki, R. & Fukahata, Y. Development of an inversion method to extract information on fault geometry from teleseismic data. Geophys. J. Int. 2201055–1065 (2020).

    Article
    ADS

    Google Scholar

  • Cesca, S. et al. Complex rupture process of the Mw 7.8, 2016, Kaikoura earthquake, New Zealand, and its aftershock sequence. Earth Planet Sci. Lett. 478110–120 (2017).

    Article
    ADS
    CAS

    Google Scholar

  • Yagi, Y. Source rupture process of the Tecoman, Colima, Mexico earthquake of 22 January 2003, determined by joint inversion of teleseismic body-wave and near-source data. Bull. Seismol. Soc. Am. 941795–1807 (2004).

    Article

    Google Scholar

  • Shimizu, K., Yagi, Y., Okuwaki, R. & Fukahata, Y. Construction of fault geometry by finite-fault inversion of teleseismic data. Geophys. J. Int. 2241003–1014 (2021).

    Article
    ADS

    Google Scholar

  • Yamashita, S. et al. Consecutive ruptures on a complex conjugate fault system during the 2018 Gulf of Alaska earthquake. Sci. Rep. 115979 (2021).

    Article
    ADS
    CAS

    Google Scholar

  • Okuwaki, R. et al. Illuminating a contorted slab with a complex intraslab rupture evolution during the 2021 Mw 7.3 east cape, New Zealand Earthquake. Geophys. Res. Lett. 48e2021GL095117 (2021).

    Article
    ADS

    Google Scholar

  • Akaike, H. Likelihood and the Bayes procedure. Jobs Stats Invest. Op. 31143–166 (1980).

    Article
    MATH

    Google Scholar

  • Yabuki, T. & Matsu’ura, M. Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip. Geophys. J. Int. 109363–375 (1992).

    Article
    ADS

    Google Scholar

  • Sato, D., Fukahata, Y. & Nozue, Y. Appropriate reduction of the posterior distribution in fully Bayesian inversions. Geophys. J. Int. 231950–981 (2022).

    Article
    ADS

    Google Scholar

  • Kikuchi , M. & Kanamori , H. Inversion of complex body waves: III. Bull. Seismol. Soc. Am. 812335–2350 (1991).

    Article

    Google Scholar

  • Yamashita, S. et al. Potency density tensor inversion of complex body waveforms with time-adaptive smoothing constraint. Geophys. J. Int. 23191–107 (2022).

    Article
    ADS

    Google Scholar

  • Laske, G., Masters, T. G., Ma, Z. & Pasyanos, M. Update on CRUST1.0: A 1-degree global model of Earth’s crust. EGU gen. Assem. 152658 (2013).

    Google Scholar

  • Yagi, Y. & Fukahata, Y. Introduction of uncertainty of Green’s function into waveform inversion for seismic source processes. Geophys. J. Int. 186711–720 (2011).

    Article
    ADS

    Google Scholar

  • Dziewonski, A. M., Chou, T.-A. & Woodhouse, J. H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. Solid Earth 862825–2852 (1981).

    Article

    Google Scholar

  • Ekström, G., Nettles, M. & Dziewoński, A. M. The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes. Phys. Earth Planet. Inter. 200–2011–9 (2012).

    Article
    ADS

    Google Scholar

  • Beresnev, I. A. Uncertainties in finite-fault slip inversions: to what extent to believe? (A Critical Review). Bull. Seismol. Soc. Am. 932445–2458 (2003).

    Article

    Google Scholar

  • Shyu , JBH , Sieh , K , Sun , J , Chen , Y.-G. & Liu , C.-S. Neotectonic architecture of Taiwan and its implications for future large earthquakes. J. Geophys. Res. 110B08402 (2005).

    ADS

    Google Scholar

  • Toda , S. & Stein , R. Taiwan earthquake sequence may signal future shocks . Shaking https://doi.org/10.32858/temblor.273 (2022).

    Article

    Google Scholar

  • Yu, S.-B. & Kuo, L.-C. Present-day crustal motion along the Longitudinal valley fault, eastern Taiwan. Tectonophysics 333199–217 (2001).

    Article
    ADS

    Google Scholar

  • Ide, S. & Aochi, H. Earthquakes as multiscale dynamic ruptures with heterogeneous fracture surface energy. J. Geophys. Res. Solid Earth 110B11303 (2005).

    Article
    ADS

    Google Scholar

  • Hori, T. & Miyazaki, S. Hierarchical asperity model for multiscale characteristic earthquakes: A numerical study for the off-Kamaishi earthquake sequence in the NE Japan subduction zone. Geophys. Res. Lett. 37L10304 (2010).

    Article
    ADS

    Google Scholar

  • Li, Y. et al. Structural interpretation of the coseismic faults of the Wenchuan earthquake: Three-dimensional modeling of the Longmen Shan fold-and-thrust belt. J. Geophys. Res. 115B04317 (2010).

    ADS

    Google Scholar

  • Yagi, Y., Nishimura, N. & Kasahara, A. Source process of the 12 May 2008 Wenchuan, China, earthquake determined by waveform inversion of teleseismic body waves with a data covariance matrix. Earth Planet. Space 64e13–e16 (2012).

    Article
    ADS

    Google Scholar

  • Hartzell, S., Mendoza, C., Ramirez-Guzman, L., Zeng, Y. & Mooney, W. Rupture History of the 2008 Mw 7.9 Wenchuan, China, earthquake: Evaluation of separate and joint inversions of geodetic, teleseismic, and strong-motion data. Bull. Seismol. Soc. Am. 103353–370 (2013).

    Article

    Google Scholar

  • Ide, S., Baltay, A. & Beroza, G. C. Shallow dynamic overshoot and energetic deep rupture in the 2011 Mw 9.0 Tohoku-Oki earthquake. Science 3321426–1429 (2011).

    Article
    ADS
    CAS

    Google Scholar

  • Meng, L., Allen, R. M. & Ampuero, J.-P. Application of seismic array processing to earthquake early warning. Bull. Seismol. Soc. Am. 1042553–2561 (2014).

    Article

    Google Scholar

  • Gallovič, F., Imperatori, W. & Mai, P. M. Effects of three-dimensional crustal structure and smoothing constraint on earthquake slip inversions: Case study of the Mw 6.3 2009 L’Aquila earthquake. J. Geophys. Res. Solid Earth 120428–449 (2015).

    Article
    ADS

    Google Scholar

  • An , C. , Yue , H. , Sun , J. , Meng , L. & Baez , J. C. The 2015 Mw 8.3 Illapel, Chile, earthquake: Direction-reversed along-dip rupture with localized water reverberation. Bull. Seismol. Soc. Am. 1072416–2426 (2017).

    Article

    Google Scholar

  • Okuwaki , R. , Yagi , Y. , Aránguiz , R. , Gonzalez , J. & Gonzalez , G. Rupture process during the 2015 Illapel, Chile earthquake: Zigzag-along-dip rupture episodes. Pure Appl. Geophys. 1731011–1020 (2016).

    Article
    ADS

    Google Scholar

  • Hicks, S. P. et al. Back-propagating supershear rupture in the 2016 Mw 7.1 Romanche transform fault earthquake. Nat. Geosci. 13647–653 (2020).

    Article
    ADS
    CAS

    Google Scholar

  • Hu, Y., Yagi, Y., Okuwaki, R. & Shimizu, K. Back-propagating rupture evolution within a curved slab during the 2019 Mw 8.0 Peru intraslab earthquake. Geophys. J. Int. 2271602–1611 (2021).

    Article
    ADS

    Google Scholar

  • Yamashita, S., Yagi, Y. & Okuwaki, R. Irregular rupture propagation and geometric fault complexities during the 2010 Mw 7.2 El Mayor-Cucapah earthquake. Sci. Rep. 124575 (2022).

    Article
    ADS
    CAS

    Google Scholar

  • Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 990–95 (2007).

    Article

    Google Scholar

  • Wessel, P. et al. The generic mapping tools version 6. Geochem. Geophys. Geosyst. 205556–5564 (2019).

    Article
    ADS

    Google Scholar

  • Gasperini, P. & Vannucci, G. FPSPACK: A package of FORTRAN subroutines to manage earthquake focal mechanism data. Comput. Geosci. 29893–901 (2003).

    Article
    ADS

    Google Scholar

Leave a Comment

Your email address will not be published. Required fields are marked *